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Abstract

The overall properties of a binary elastic periodic fiber-reinforced composite are studied here for a cell periodicity of

square type. Exact formulae are obtained for the effective stiffnesses, which give closed-form expressions for composites

with isotropic components including ones for empty and rigid fibers. The new formulae are simple and relatively easy to

compute. Examples show the dependences of the stiffnesses as a function of fiber volume fraction up to the percolation

limit. The specific example of glass fibers in epoxy yields new curves, which correct those displayed before by Meguid

and Kalamkarov. Comparison with experimental data is very good. Bruno, Hill and Hashin’s bounds are compared

with the exact solution. In most cases, the latter is very close to a bound in a given interval. A useful fact to know, where

the easy formula afforded by the bound is advantageous. Plots of effective properties are also given for values of the

shear moduli ratio of the two media. The overall parameters in the cases of empty and rigid fibers are also shown. The

exact formulae explicitly display Avellaneda and Schwarts’s microstructural parameters, which have a physical

meaning, and provide formulae for them. The equations easily lead to Hill’s universal relations. � 2001 Elsevier Science
Ltd. All rights reserved.

Keywords: Fiber-reinforced composites; Isotropic components; Empty fibers; Rigid fibers; Asymptotic homogenization; Tetragonal

symmetry

1. Introduction

Here the concerned problem of finding effective properties is related to materials that have a periodic
microstructure. Methods applied to composites with a random distribution of inclusions such as the self-
consistent technique can be found in various textbooks (Aboudi, 1991; Christensen, 1991; Nemat-Nasser
and Hori, 1999). For periodic media, on the other hand, Fourier series methods have been applied by
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Iwakuma and Nemat-Nasser (1983) and more recently by Luciano and Barbero (1994). Also, Aboudi
(1991) introduced the so-called method of cells, which covers a wide range of applications. An alternative
technique, in the absence of exact or numerical solutions, are the bounding methods, which offer the ca-
pability of providing a limited range of possibilities for the relevant property. Thus the bounds of Hashin,
Hill, Hashin and Shtrikman (Christensen, 1991), Bruno (1991) and many others (see, for instance, Nemat-
Nasser and Hori, 1999). The asymptotic homogenization method (Bensoussan et al., 1978; S�aanchez-
Palencia, 1980; Lions, 1981; Pobedrya, 1984; Bakhvalov and Panasenko, 1989; Oleinik et al., 1992; Parton
and Kudryavtsev, 1993; Kalamkarov and Kolpakov, 1997) is another technique, which can produce closed-
form solutions (Pobedrya, 1984; Rodr�ııguez-Ramos et al., 2001) or numerical solutions upon solving the so-
called cell problems (see, references in Rodr�ııguez-Ramos et al., 2001). Here the problem of finding the
effective properties of a two-phase fiber-reinforced composite is addressed. Elastic isotropic materials are
considered and fibers distributed periodically along the x1- and x2-directions are studied by means of the
asymptotic homogenization method. Exact closed-form formulae are provided directly from the formu-
lation of Rodr�ııguez-Ramos et al. (2001) in a manner which is suitable for a relatively easy computation.
The formulae, for the limiting cases of empty and rigid fibers, are also obtained from the original formulae.
It must be mentioned that Pobedrya (1984), Parton and Kudryavtsev (1993) and Meguid and Kalamkarov
(1994) also applied the asymptotic homogenization method to a fiber-reinforced composite with only
isotropic elastic constituents. The former provided closed-form formulae, but not for empty or rigid fibers,
in a complicated notation, whereas the latter two did not get any final closed-form formulae for the effective
properties. In fact it is possible to get the same formulae which is given in this paper through the two
slightly different routes of Pobedrya (1984), which was used in Rodr�ııguez-Ramos et al. (2001), and the
other two. This is not explicitly given here.
Parton and Kudryavtsev (1993) did not produce any numerical results and share with Meguid and

Kalamkarov (1994) a ‘‘misprint’’, which is carried out in latter equations. It says ‘‘GM=GF ’’ where it should
say ‘‘GF =GM ’’ in Eqs. (35) and (9.21), respectively. In fact several plots in Meguid and Kalamkarov (1994)
are incorrect. Here the correct ones are given. Comparison with experimental data, known bounds are
other solutions (Aboudi, 1991; Luciano and Barbero, 1994; Pobedrya, 1984) is done with the exact solution.
It turns out that, in a certain interval of the fiber volume fraction, some bound and the exact solution are
very close to each other thus providing a simple formula, the bound, for its use in the calculation of the
problem involved and giving a greater certainty in the result. See, for instance, Talbot (1999). Also closed-
form expressions are given for the two microstructural parameters of Avellaneda and Swart (1998).
Section 2 starts with the statement of the problem, introducing the overall stiffnesses and engineering

constants of the composite. Section 3 has the exact closed-form formulae for the overall properties of the
binary composite with isotropic constituents and square symmetry. Similar formulae are also provided for
two important limiting cases: of empty and rigid fibers. Various examples are considered in Section 4, where
comparison among the exact solution, known bounds (Hashin, Hill and Bruno), other solutions and ex-
perimental data is discussed. Section 5 has some final remarks. The paper ends with two appendices.
Appendix A defines parameters which appear in the exact formulae. Appendix B defines vectors, matrices
and series relevant to the formulae.

2. Statement of the problem

A binary periodic composite is considered here in which aligned cylindrical fibers are embedded in
matrix material. The direction of the fibers, which have a circular cross-section, are parallel to the Ox3 axis.
See Fig. 1. Both components have isotropic elastic properties. The periodic cell S of the composite is a
square, that is, the fibers are periodically distributed without overlapping along the directions parallel to the
Ox1 and Ox2 axes. The effective properties of this composite are tetragonal. The non-vanishing components
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of the stress–strain relationship may be written in terms of six independent constants �kk, �ll, �nn, �pp, �mm and �mm0 as
follows:

1
2
ð�rr11 þ �rr22Þ ¼ �kkð���11 þ ���22Þ þ �ll���33;

�rr33 ¼ �llð���11 þ ���22Þ þ �nn���33;

�rr11 � �rr22 ¼ 2 �mm0ð���11 � ���22Þ;
�rr32 ¼ 2�pp���32;
�rr31 ¼ 2�pp���31;
�rr12 ¼ 2 �mm���12;

ð2:1Þ

where �rrij are the components of the stress tensor, the indices i, j run from 1 to 3; the components of the
strain tensor are

���ij ¼
1

2

o�uui

oxj

 
þ o�uuj

oxi

!
; ð2:2Þ

here �uui are the components of the displacement vector; �kk is the plane-strain bulk modulus for lateral di-
latation without longitudinal extension; �ll is the associated cross-modulus; �nn is the modulus for longitudinal
uniaxial straining; �pp is the rigidity modulus for shearing in the longitudinal direction; �mm is the rigidity
modulus for shearing in any transverse direction. In terms of these parameters, the axial, with subindex a,
Young’s modulus and Poisson’s ratio are �EEa and �mma, in that order; the transverse, with subindex t, Young’s
modulus and Poisson’s ratio, �EEt and �mmt, respectively, are related as follows

�EEa ¼ �nn� �ll2=�kk ¼ �nn� 4�kk�mm2a;
�mma ¼ �ll=2�kk;
�EEt ¼ 4�kk�ppð�kk þ �nn�pp= �EEaÞ ¼ 2ð�llþ �mmtÞ�pp;
�mmt ¼ ð�kk � �nn�pp= �EEaÞ=ð�kk þ �nn�pp= �EEaÞ:

ð2:3Þ

The bulk and rigidity moduli of the matrix and the fiber are denoted by K1, l1, and K2, l2, respectively. The
area fractions occupied by the matrix and the fiber in the x1x2-plane are V1 and V2, in that order, so that

Fig. 1. It shows a cross-section of the unit square cell S of the composite, which is repeated in the directions of the Ox1 and Ox2 axes.
The fiber occupies a circular region S2 of radius R and center O, the matrix occupies S1 so that S ¼ S1 [ S2. The common interface is C.
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V1 þ V2 ¼ 1. Note that the percolation limit is V2 ¼ p=4, when the fibers are in contact. The arithmetic or
Voigt average of the above properties is written by

Kv ¼ K1V1 þ K2V2;

lv ¼ l1V1 þ l2V2;
ð2:4Þ

in that order.
Furthermore, the contrast of the properties K and l across the interface C is written using the double bar

notation, viz.,

jjKjj ¼ K1 � K2;

jjljj ¼ l1 � l2;
ð2:5Þ

respectively.
The main objective of this paper is to give useful closed-form formulae for the calculation of the effective

properties and its associated engineering moduli.

3. Closed-form formulae

3.1. Two-phase elastic composite

Recently, Rodr�ııguez-Ramos et al. (2001) studied a similar fiber-reinforced composite with the same
geometry except that both elastic media considered had transversely isotropic properties. The effective
properties of the composite were obtained using the method of asymptotic homogeneization, and properties
of doubly periodic functions. Those results can be specialized to the case of isotropic components to yield
the following simple expressions:

�kk ¼ Kv þ 1
3
lv � V2jjK þ 1

3
ljj2Ki=l1;

�ll ¼ Kv � 2
3
lv � V2jjK þ 1

3
ljjjjK � 2

3
ljjKi=l1;

�nn ¼ Kv þ 4
3
lv � V2jjK � 2

3
ljj2Ki=l1;

�pp ¼ l1½1� 2V2jjljjPi=ðl1 þ l2Þ
;
�mm ¼ l1 � V2jjljjMi;

�mm0 ¼ l1 � V2jjljjM 0
i ;

ð3:1Þ

where

Ki ¼ Di½V1 þ ð1þ j1ÞDiV
T
pM

�1
k

~VVp
=Bi;

Pi ¼ ½1þ vV2 � v2VT
pM

�1
p

~VVp
�1;
Mi ¼ ð1þ j1ÞEi=½1þ R2H�

i �VT
mM

�1
m

~VVm
;
M 0

i ¼ ð1þ j1ÞEi=½1þ R2Hþ
i �VT

m0M
�1
m0 ~VVm0 
;

ð3:2Þ

where the parameters Ai, Bi, Ci, Di, Ei, Fi, Gi, vl, jj ðj ¼ 1; 2Þ and v are defined in the Appendix A, whereas
the infinite order vectors Vp, ~VVp, Vm, ~VVm, Vm0 , ~VVm0 and matrices Mk, Mp, Mm, Mm0 are given in Ap-
pendix B, together with H�

i . The superindex T denotes a transpose vector.
It is worthwhile to see that the effective properties �kk, �ll, �nn, �pp, �mm, and �mm0 in Eq. (3.1) are given in terms of

the properties of the two constituents, the area fraction occupied by them, the radius R of the circular cross-
section and series related to doubly periodic functions of square symmetry. The four expressions Ki, Mi, Pi,
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and M 0
i that appear in Eq. (3.1–2) are, in fact, relatively easy to compute. Numerical experiments show that

enough accurate results are obtained, when the infinite order vectors and matrices involved are truncated to
the second order, because powers of R, a number less of equal than 0.5, are present and the series that
appear converge very quickly. It is also interesting to mention that Ki and M 0

i are related to two micro-
structural parameters Ak and Am0 , introduced by Avellaneda and Swart (1998). They have a simple physical
interpretation, i.e., Ak and Am0 represent, respectively, the mean transverse hydrostatic strain and mean
deviatoric strain in the fiber phase, per unit applied transverse pressure and shear. Therefore,

Ak ¼ 1þ jjK � 1
3
ljjKi=l1;

Am0 ¼ M 0
i :

ð3:3Þ

Thus, Eq. (3.3) provides a closed form expression for Avellaneda and Swart (1998) microstructural pa-
rameters.
Another interesting result follows from the elimination of Ki in the first three terms of Eq. (3.1), that is to

say,

jjK þ 1
3
ljj

jjK � 2
3
ljj ¼

�kk � Kv � 1
3
lv

�ll� Kv þ 2
3
lv

¼
�ll� Kv þ 2

3
lv

�nn� Kv � 4
3
lv

; ð3:4Þ

the universal relations of Hill (1964) are easily found from the exact formulae.

3.2. Empty fibers

Appropriate closed-form formulae can also be obtained for the case when the fiber is empty. The limit,
when the properties of the fiber material tends to zero, yield the following closed-form expressions

�kke ¼ ðK1 þ 1
3
l1ÞV1 þ ðK1 þ 1

3
l1Þ

2Ke=l1;
�lle ¼ ðK1 � 2

3
l1ÞV1 � V2ðK1 þ 2

3
l1ÞðK1 � 2

3
l1ÞKe=l1;

�nne ¼ ðK1 þ 4
3
l1ÞV1 � V2ðK1 � 2

3
l1Þ

2Ke=l1;

�ppe ¼ l1ð1� 2V2PeÞ;
�mme ¼ l1ð1� V2MeÞ;
�mm0
e ¼ l1ð1� V2M 0

eÞ;

ð3:5Þ

where Ke,Me, Pe andMe are given by Eq. (3.2) upon the substitution there of the values of the parameters Ai,
Bi, Ci, Di, Gi, Ei, v and j0

1, as follows:

�Ai ¼ Bi ¼ Ei ¼ v ¼ 1;
Ci ¼ � 2Di ¼ �1=Gi;

j1 ¼ ðK1 þ 7
3
l1Þ=ðK1 þ 1

3
l1Þ:

ð3:6Þ

Again the universal relations (3.4) follow with K2 ¼ l2 ¼ 0, or by the elimination of Ke from the first three
terms of Eq. (3.5).

3.3. Rigid fibers

Closed-form expressions for the overall properties of rigid fibers can also be derived from Eq. (3.2) in the
limit of very large values of the fiber properties. The relevant quantities become
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�kkr ¼ ðK1 þ 1
3
l1Þð1þ V2KrÞ;

�ppr ¼ l1ð1þ 2V2PrÞ;
�mmr ¼ l1ð1þ V2MrÞ;
�mm0
r ¼ l1ð1þ V2M 0

rÞ;

ð3:7Þ

where

Kr ¼ 1þ ðj1 � 1Þ½Gi � ð1þ j1ÞBiV
T
pM

�1
k

~VVp=V1
=V1;
Pr ¼ ½1� V2 �VT

pM
�1
p

~VVp
�1;
Mr ¼ ð1þ 1=j1Þ=½1þ R2H�

i �VT
mM

�1
m

~VVm
;
M 0

r ¼ ð1þ 1=j1Þ=½1þ R2Hþ
i �VT

m0M
�1
m0 ~VVm0 
;

ð3:8Þ

here, and in the infinite order vectors and matrices

Ai ¼ v ¼ �1;
Bi ¼ � 1=j1 ¼ �ðK1 þ 7

3
l1Þ=ðK1 þ 1

3
l1Þ;

Ci ¼ � 2l1=V1ðK1 þ 7
3
l1Þ;

ð3:9Þ

Gi is given by Eq. (A.1) and H�
i by Eq. (B.4).

It is interesting to note that a relation exists between Pe and Pr, namely,

P�1
e � P�1

r ¼ 2V2; ð3:10Þ

since Pe and Pr are independent of the parameter properties and depend on the square symmetry and the
radius R of the fiber only.

4. Numerical examples

4.1. Two-phase elastic composite

As a first example, the same materials that were considered by Meguid and Kalamkarov (1994), Luciano
and Barbero (1994), is dealt with. Here the properties are taken from Tsai and Hahn (1980) for the epoxy
matrix, Young’s modulus is E1 ¼ 3:45 GPa and Poisson’s ratio is m1 ¼ 0:35, whereas the corresponding
values for the glass fibers are E2 ¼ 73:1 GPa and m2 ¼ 0:22: It is believed that these values are representative
of those used by Meguid and Kalamkarov (1994). They did not give these explicitly.
As a function of the fiber volume fraction V2, up to the percolation limit of p=4, dimensionless plots of

the effective transverse Young’s modulus �EEt=E1, transverse and axial shear moduli �mm=l1, �pp=l1, axial and
transverse Poisson’s ratio �mma=m1, �mmt=m1 computed using the exact formulae (continous line) are shown in Figs.
2–6, respectively. Also, in those figures, two other curves are displayed, viz., upper (dash–dotted line) and
lower (dotted line) bounds. (The bounds of Hashin (1965) and Hill (1964) (see, also Christensen, 1991) for a
transversely isotropic medium appear in Figs. 2, 3, 5 and 6. In Fig. 4, however, those of Bruno (1991) are
plotted). Fig. 3 also shows the dimensionless modulus m0=l1.
It is found that the exact solution and the bounds coincide for the dimensionless axial Young’s modulus

�EEa=E1, like in Meguid and Kalamkarov (1994), showing an almost linear behavior. This figure is not shown
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for brevity. However, the other four parameters in Figs. 2–5 show quite a different behavior from those
calculated by them. The corrected ones are presented here.
The effective transverse Young’s modulus �EEt=E1, which lies between the bounds, increases monotonically

and is closer to the lower bound up to 0.2 of the fibre volume fraction and then it deviates appreciable up to
V2 ¼ p=4, as it can be seen in Fig. 2. The experimental data, taken from Tsai and Hahn (1980), are also
shown as the open circles. The agreement is quite good between the experimental values and the exact
solution, which follows the data through the middle of the data cloud. These results can also be com-
pared with those obtained by Aboudi (1991) using the method of cells and those calculated by Luciano
and Barbero (1994), who used a Fourier series technique by considering a piecewise constant eigenstrain.
All the three curves show the same trend. The latter two curves are not plotted. Their behavior can easily

Fig. 2. Plot of the dimensionless overall transverse Young’s modulus �EEt=E1 against the fiber volume fraction V2. The continuous line is
computed using the exact formulae, the dash-dotted (dotted) line shows the upper (lower) bounds of Hashin (1965) and Hill (1964).

Tsai and Hahn (1980) experimental data are shown as open circles.

Fig. 3. Normalized transverse shear modulus �mm=l1 (star) and m0=l1 (continuous line) against fibre volume fraction V2 plot, with the
same conventions of Fig. 2. Note that the exact solution for �mm=l1 need not be between the bounds.
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be established in relation with the data. Both curves, viz., Aboudi, Luciano and Barbero, lie next to
the lower edge of the data cloud and they are close to each other. Aboudi’s curve is closer to the exact
solution.
As it is shown (star) in Fig. 3, the effective transverse shear modulus �mm=l1, also increases monotonically

as a function of fibre volume fraction V2 and is quite close to the lower bound except near the percolation
limit. It must be recalled that the bounds plotted correspond to a transversely isotropic medium which has a
different anisotropy from the tetragonal effective medium considered here. There is no reason for the exact
solution to lie between these bounds. Luciano and Barbero’s also computed this parameter. Their curve is
an underestimate for the exact curve. A plot of m0=l1 against fibre volume fraction V2 is also shown in Fig.
3. The exact solution displays a monotonically increasing value as a function of V2, close to the lower bound
up to V2 ¼ 0:2; it always lies between the two bounds.
As for �pp=l1, shown in Fig. 4, the closed-form solution increases monotonically and is closer to the lower

bound up to V2 ¼ 0:5, where it deviates up to the percolation limit; it always lies between the bounds. The

Fig. 4. Dimensionless axial shear modulus �pp=l1 versus fibre volume fraction V2 plot. Same convention as in Fig. 2, but here the bounds
are those of Bruno. The exact solution lies between the tight bonds.

Fig. 5. Plot of the normalized axial Poisson’s ratio �mma=m1 against fibre volume fraction V2. Same conventions as in Fig. 2.
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tighter upper bound of Bruno (1991) is also shown in Fig. 4 as the dashed line. The lower bound of Bruno is
the same as the Hashin–Hill lower bound. Note that the exact solution is very close to the upper bound of
Bruno up to V2 ¼ 0:3 where it starts to deviate up to V2 ¼ p=4. This behavior is not shown by Meguid and
Kalamkarov (1994) in their Fig. 3(a), where their calculated value, which is clearly wrong, lies closer to the
upper Hashin–Hill bound value. Fig. 4 also shows experimental data as open circles from Tsai and Hahn
(1980). The agreement of these with the exact solution is quite good, since it goes through the middle of the
data cloud. The curves obtained by Aboudi (1991) and Luciano and Barbero (1994), not plotted here, show
the same characteristics that were discussed for them in the Fig. 2.
In Fig. 5, the exact expression of �mma=m1, which decreases monotonically, is very similar to Luciano and

Barbero’s curve except near the percolation limit, which lies close to the upper bound up to V2 ¼ 0:5, where
it deviates; it always lies between the bounds.
An independent check of the correctness of the calculated values using the exact formulae of this paper

and tabulated values of Pobedrya (1984) was carried out. He derived formulae for the effective properties of
a fiber-reinforced composite with only isotropic elastic constituents using the asymptotic homogenization
method. For the ratio l2=l1 ¼ 20, which is close to the value of 23.45 that corresponds to the materials used
in the example of Figs. 2–6, the calculated normalized values here and in Pobedrya’s table, have a relative
error less than 0.5% except near the percolation value, where the error is larger: less than 3%. For the other
values in the table, as a function of l2=l1 and V2, the relative error is less that 3% except near the perco-
lation limit and the larger values of l2=l1. It must be mentioned than the rigid limit has to be taken
carefully. Here explicit exact formulae are also given.
The plot of the dimensionless plane Poisson’s ratio �mmt=m versus V2 in Fig. 6 shows that the exact solution

lies in between the Hashin bounds, not being close to any of them. It differs from the one calculated by
Luciano and Barbero, specially near the percolation limit, in their case, it never is smaller than one as it is
the case here beyond approximately V2 ¼ 0:45. It is interesting to note two different regimes relative to the
matrix value.
Except for the latter parameter, the other properties in Figs. 2–5 show a linear behavior for small values

of V2 and then a rapid monotone one, this is consistent with the concept of a fibre-reinforced material, that
is to say, the composite becomes stiffer as the (stiffer) fiber material increases, with the indicated behavior
relative to V2.

Fig. 6. Plot of the normalized transverse Poisson’s ratio �mmt=m1 against V2. Same conventions as in Fig. 2.
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It is interesting to show the dependence of the overall stiffnesses plotted versus fiber volume fraction V2 as
a function of the shear modulus ratio of the constituents materials z ¼ l2=l1. Fig. 7 shows a plot of �kk=K1,
versus V2 for z ¼ 0 (empty fibers as open circles), 0.9 (dash), 6 (dash-dot), 20 (dot), 120 (star) and1 (rigid
fibers as the continuous line). There is no overlap between the curves which either increase ðfor z ¼
6; 20; 120 and1Þ or decrease (for z ¼ 0 and 0.9) monotonically from the matrix value at zero fiber volume
fraction to the percolation limit. The curves for �pp=l1, �mm=l1 and �mm0=l1 have a similar behavior as in Fig.
7, although these are not shown here for brevity. As a function of z each curve shows a linear behavior
for small values of V2 and then a rapid monotone change, either stiffer or weaker according to z > 1 or
z < 1.
The exact solution for �pp=l1 is plotted as the continuous line as a function of z ¼ l2=l1 in the range

between 0 and 1 in Fig. 8; In the figure V2 ¼ p=4 is the percolation limit. The upper (dash-dot) and lower
(dot) bounds of Bruno (1991) are also shown. In the interval [0,1], Bruno’s lower bound is quite close to the
exact solution and, from about z ¼ 0:5 the three curves almost overlap in an almost linear fashion.

4.2. Empty fibers

The next two figures, Figs. 9 and 10 show plots against the volume fraction V2 of three normalized axial
and transverse effective parameters, respectively. The continuous line corresponds to Young’s moduli, the
dotted line to shear modulus and the dash-dotted line to Poisson’s ratio, in the same order, in Figs. 9 and

Fig. 7. Normalized overall plane bulk modulus �kk=K1 versus fiber volume fraction V2 plot as a function of z ¼ l2=l1. The shown curves
are for z ¼ 0 (empty fibers as open circles), 0.9 (dash), 6 (dash-dot), 20 (dots), 120 (star) and 1 (rigid fibers as the continuous line).
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10. The axial Poisson’s ratio is constant in the whole interval. The other five parameters decrease mono-
tonically from the matrix value. The shear modulus decreases to a near zero value at the percolation limit.
The other three parameters decrease to a small value, however. It is worthwhile to note that the transverse
Poisson’s ratio reaches a minimum value near the percolation value and this was not shown by Meguid and
Kalamkarov (1994) in their Fig. 5. In this weakened composite the moduli exhibit the diminishing effect of
lesser material.

Fig. 9. Axial overall properties for empty fibers against fiber volume fraction V2. Young’s modulus �EEa=E1, the continuous line; shear
modulus �ppa=l1, the dotted line; Poisson’s ratio �mma=m1, the dash-dotted line.

Fig. 8. Plot of normalized overall shear modulus �pp=l1 against z ¼ l2=l1 from 0 to 1. The upper (dash-dot) and lower (dot) bounds of
Bruno (1991) are also shown.
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4.3. Rigid fibers

Fig. 11 displays two plots of dimensionless axial Young’s modulus �EEa=E1 (continuous line) and Poisson’s
ratio �mmt=m1 (dash-dotted line) against fiber volume fraction V2 for rigid fibers. The Young’s modulus in-
creases monotonically from the matrix value; near the percolation limit, the increase is very rapid producing
a stiffer composite. On the other hand, Poisson’s ratio decreases almost linearly from the matrix value to
nearly zero at V2 ¼ p=4.

Fig. 10. Transverse effective properties for empty fibers versus fiber volume fraction V2. Young’s modulus �EEt=E1, the continuous line;
shear modulus �mm=l1, the dotted line; Poisson’s ratio �mm2=m1, the dash-dotted line.

Fig. 11. Axial overall properties for rigid fibers against fiber volume fraction V2. Young’s modulus �EEa=E1, the continuous line; Poisson’s
ratio �mmt=m1, the dash-dotted line.
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5. Concluding remarks

Exact closed-form formulae are given for a two-phase periodic fiber-reinforced composite, whose con-
stituents are elastic isotropic media. The composite periodicity is square, so that the overall properties are
tetragonal. Two limiting cases are considered as well, that of empty and rigid fibers for which new formulae
are also given. The formulae are amenable for relatively easy computation. The series involved converge
rather quickly. Not more that the second order of the infinite order vector and matrices are needed, because
high powers of the radius of the circle R6 0:5 are present.
The results presented include comparisons with known bounds: Hashin and Hill’s for transversely

isotropic composite and Bruno’s (1991) for dielectric material composite. In a large number of cases, the
exact solution is very close to the bound in a certain interval of the fiber volume fraction V2 or in the ratio of
fiber to matrix parameters. This kind of information may be useful where the use of the simple expression
given by the bound can yield easily amenable results in a certain problem. For instance, see Talbot (1999),
where Bruno’s bounds can produce improved bounds for a nonlinear composite.
Some of the results presented here are corrections to the ones given in Meguid and Kalamkarov (1994).

A misprint in their formulae is found. It says ‘‘GM=GF ’’ where it ought to say ‘‘GF =GM ’’ in their Eq. (35). A
full check of their equations was not done. Incidentally, the same ‘‘misprint’’ appears in the book of Parton
and Kudryavtsev (1993) in their Eq. (9.21), etc. and possible others, which were left unchecked, because it is
beyond the scope of this paper.
The comparison of the exact solution with experimental data is also very good, even better than the

curves produced using other methods (Aboudi, 1991; Luciano and Bisegna, 1994). These two methods
produce curves which generally lie below the one for the exact solution, and lie close to the lower edge of the
set of experimental data.
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Appendix A

Definition of parameters that appear in some equations of Appendix B and in Eqs. (3.1) and (3.2)

Ai ¼ ðj1vl � j2ÞBi=ðj2 þ vlÞ;
Bi ¼ ð1� vlÞ=ð1þ j1vlÞ;
Ci ¼ ½ðj1 � 1Þvl � ðj2 � 1Þ
Bi=Fi;

Di ¼ ðj2 � 1ÞBi=2Fi;

Ei ¼ Bi=ð1� vlÞ;
Fi ¼ V1vl þ ðj2 � 1ÞGi;

Gi ¼ 1=2þ V2=ðj1 � 1Þ;
vl ¼ l2=l1
jj ¼ ðKj þ 7

3
ljÞ=ðKj þ 1

3
ljÞ; j ¼ 1; 2;

v ¼ klk=ðl1 þ l2Þ:

ðA:1Þ
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Appendix B

The infinite order vectors and matrices of Eq. (3.2) are given as follows. Here t; s ¼ 1; 2; 3; . . .. The vector
VpðvsÞ, matrix MpðmtsÞ and vector ~VVpð~vvtÞ, have components given by

vs ¼ R8sg1 4s�1;

mts ¼ d4t�1 4s�1 � v2R8s
X1
i¼1

R8ig4t�1 4iþ1 g4iþ1 4s�1;

~vvt ¼ g4t�1 1;

ðB:1Þ

where dts is Kronecker’s delta; it is equal to one, if t ¼ s and zero otherwise. For a definition of v and the
parameters below Ai;Bi;Ci, see Appendix A.
Similarly, forVm0 ðvþs Þ,Mm0 ðmþ

ts Þ, ~VVm0 ð~vvþt Þ andVmðv�s Þ,Mmðm�
ts Þ, ~VVmð~vv�t Þ, the components are defined as

follows

v�s ¼ R8sþ4ð�Air1 4sþ1 þ Big1 4sþ1Þ;
m�

ts ¼ d4tþ1 4sþ1 þ R8sþ2ðAir4tþ1 4sþ1 � Big4tþ1 4sþ1Þ;
~vv�t ¼ � Air4tþ1 1 þ Big4tþ1 1;

ðB:2Þ

the matrix MkðmtsÞ has components defined next

mts ¼ d4t�1 4s�1 þ R8s�2ðAir4t�1 4s�1 þ Big4t�1 4s�1 þ CiR2g4t�1 1 g1 4s�1Þ: ðB:3Þ

Finally,

H�
i ¼ Air11 þ Bi½pðj1 � 5S4=p2Þ � g11
: ðB:4Þ

The above formulae involve certain convergent series related to the doubly periodic elliptic functions of
periods x1 ¼ 1 and x2 ¼ i defined below

Skþl ¼
X0

m;n

b�k�l
mn for k þ lP 3;

Tkþl ¼
X0

m;n

�bbmnb
�k�l�1
mn for k þ lP 3; ðB:5Þ

gkl ¼ � Cl
kþl�1Skþl;

g0
kl ¼ Cl

kþlTkþl;

where bmn ¼ mx1 þ nx2;m; n ¼ 0; 1; 2; . . . ; the prime on the sigma symbol denotes that the double sum-
mation excludes the term m ¼ n ¼ 0 and Cl

k ¼ k!=l!ðk � lÞ! S2 � T2 � 0. Also,

rkl ¼
X1
i¼3

oR2gkigil;

gkl ¼ k
k þ lþ 2
lþ 1 R2gkþ2 l

�
þ g0

kl

�
;

ðB:6Þ

for k; l ¼ 1; 3; 5; . . .. The superindex o on the sigma symbol means that the summation is carried only over
odd indices. The double series

P
k;l gkl and

P
k;l rkl are absolutely convergent. The above series converge

very quickly.
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